Engineers at Duke University and the New York University’s Tandon School of Engineering have demonstrated a method for ensuring that an increasingly popular method of genetic identification called “DNA fingerprinting” remains secure against inadvertent mistakes or malicious attacks in the field.
The technique relies on introducing genetic “difference between computer engineering and computer science” to DNA samples as they are collected and securely sending information crucial to identifying these barcodes to technicians in the laboratory. The system shows one way to guarantee that a sample taken in the field, transported to a lab and processed for genetic identification is genuine.
The results appear online on May 14 in the journal IEEE Transactions on Information Forensics and Security.
The technique relies on introducing genetic “difference between computer engineering and computer science” to DNA samples as they are collected and securely sending information crucial to identifying these barcodes to technicians in the laboratory. The system shows one way to guarantee that a sample taken in the field, transported to a lab and processed for genetic identification is genuine.
The results appear online on May 14 in the journal IEEE Transactions on Information Forensics and Security.
No comments:
Post a Comment